Co-firing of refined biomass pellets at Nordjylland Unit 3

Dr. Jeppe Grue, Head of Section
Bio Energy and Thermal Power
Nordjylland Unit 3 – USC unit with world class efficiency

- Hard coal fired tower boiler: 850 MW_{thermal}
- Double reheat steam cycle:
 290 bar, 582°C/580°C/580°C
- Net electric efficiency: 47%
- Tower boiler
- 4 burner levels
 - Babcock (Hitachi) MPS 212 roller mills
 - Tangential firing
 - Low NOx burners
- deNOx catalyst, ESP and wet desulperisation
Biomass: Refined pellets

- Steam exploded pellets
 - Wood chips mixed with high pressure steam for few minutes.
 - Relief of pressure creates steam explosion which breaks fibres
 - Energy content is higher
 - 20-25% higher LHV than white pellets
 - Maintain power station max. load
 - Higher energy content pr. transport
- Can be stored outdoor
- Improved grindability
Test: Storing refined pellets outdoor during autumn

› Test period 48 days
› Precipitation 360 mm (rain)
 › 75% absorbed in the pellets
 › 25% percolate
› Pellets did not disintegrate
Test: Storing refined pellets outdoor during autumn

 › Increased moisture in top layer (50 cm)
 › Moisture content increased 6% to 18%

 › Percolate
 › High chemical oxygen demand (>300 g/L)
 › Must be burned with the pellets
Test: Co-firing tests

› 100% refined pellets in one pulveriser
 › Two pulverisers fed by coal

› Aim of test
 › Pulveriser load min. to max
 › Pulveriser gradient
 › Assessment of
 › Flame stability
 › LOI
 › Emissions
 › Limits on plant load
Safety – main issues of HAZID

› **ATEX**
 › Hot air to pulverise at max 250°C
 › Water spray at bunker to reduce dust at conveyers
 › All mills equipped with Kidde-Deugra explosion suppression system
 › ATEX precautions when emptying pulveriser rejection box

› **Sampling of hazardous gasses**
 › Mostly undetectable and far below limits
Plant modifications

› Coal forms an air tight seal in silo
 › Refined pellets don't
 › Dust can flow from pulveriser to feeder
 › This eventually blocks the feeder

› Installation of rotary valve
 › Prevents flow of dust from pulveriser to feeder
Firing 30 mass% refined pellets

› Refined pellets compared to coal
 › Lower density
 › Lower LHV
› Therefore
 › Pulveriser unable to meet 33 mass%
 › Energy basis 25%
› Unit max load
 › Normally 100% load with 3 pulverisers
 › Refined pellets limits this to 95-97%
 › 4 Pulverisers needed for max. load
Test with 100% refined pellets in one pulveriser
Adjustment of flame scanners were necessary

- LAND flame scanners
- Bio flame was slightly different from coal flame
- Visual inspection verified stable flames
- Adjustment of scanner proved sufficient to ensure safe operation of pulveriser
The pulveriser performed very well during the test

Changes in mill control
› Rotating classifier stopped to reduce recycling of particles
› Max. 250°C air inlet temperature (ATEX requirement)

Key observations
› Max. grinding pressure, (roller height above 40 mm set point)
› Motor power high but still 10% margin
› No significant amount in rejection box
Emissions

- Concentration of NOx and SOx were below coal reference
- This is similar to white pellets
- Unburnt carbon in flyash < 3%
- Electro static Precipitator at same level as coal
Operation of wet DeSO\textsubscript{X} unit at low sulphur load

› Gypsum crystallization
 › Low load leads to slow crystal growth, which leads to high moisture content and low gypsum quality

› Gypsum purity
 › At low sulphur load the ratio between flyash and gypsum is less favourable
 › At low sulphur load the mean crystal diameter diminishes, i.e. less efficient gypsum-ash separation.

› COWI has recent experience with selection of crystal growth modifiers and control and regulation of the concentration to solve the problem
Conclusions

› Successful test
 › 100% pellets in one pulveriser
 › Max and min pulveriser load
 › Gradient test at max. feeder gradient

› Recommendations
 › Flame scanner needs adjustment
 › Rotary valve between pulveriser and feeder is necessary
 › Pulveriser operated at max. grinding pressure – probably wear will increase

› COWI's expert assisted the customer by
 › Planning of tests
 › HAZID and ATEX screening
 › Authorities environmental permissions
 › Detailed instructions, supervision and decisions during test in direct cooperation with control room personnel
 › Evaluation and reporting of the test